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I. INTRODUCTION

Increased theoretical and experimental interest in multi-
particle scattering amplitudes has recently sparked interest
in the complex helicity plane.l This is because in multi-
particle amplitudes singularities in complex helicity play a
role very similar to singularities in complex angular momentum--
both control specific, distinct asymptotic limits.2 Despite
their similar manifestations, however, there are fundamental
differences between complex angular mementum and ccmplex helicity.
Ahereas angular momentum is a Poincare invariant quantity and
singularities in complex angular momentum are manifestations
of dynamical objects like bocund states and resonances, helicity
is not a Poincare invariant and thus singularities in compiex
helicity are not expected to be manifestaticns of independent
dynamical objects. Indeed, it is usually assumed that the
helicity singularities are completely determined by the angular
mementum singularities--a Regge pole in angular momentum at

i o= Xi vielding singularities at "sense" values of the helicity,
ms= a, - p (1.1

where p 1is a positive integer or zero. Here we give arguments

for this rule.

In order to illustrate the impcrtance of the rule (1.1),
let us briefly mention two of its interesting conseguences. It
has recently been shown that the vanishing of the Pomeranchon-
particle-Reggeon vertex for a Pomeranchon with unit intercept3

implies of the vanishing of the Pomeranchon-particle-particle



elastic vertex.LL The Pomeranchon-particle-Reggeon vertex con-

tains a term [see Egs. (1.15) to (1.17) below]
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where /5 is the elastic coupling and in Fig. 1 0((t1) = O(,P,
517 / |
K (t,) = Kp» = (: —-—--) . This is the only
2 R /)? 8152 i
term 2= 1/ g so the vanishing of (1.2) implies the vanishing
of f3 . Since the decoupling is proven only for 77 = (m2 -t

- E(R’ an additional term in the vertex of the form

ey

would cancel (1.2) and cause the proof of the vanishing of the

(1.2)

) w2

elastic coupling to fails—-thereby saving the simple picture of the

Pomeranchon as a Regge pole with exactly unit intercept.
However, such a term corresponds to a "nonsense" helicity sin-

gularity at m = (X, + 1 and is excluded by (1.1}.

R

As a second example, we note that (1.1) implies the uniformity

of the interchange of Regge and scaling limits for inclusive

crose sections. The inclusive cross section for 1 + 2 —» 2' + X

(see Fig. 2) is

dio / = a
B TS Discppa A (5%, 47°)

where s = (p; + p2)2, t = (p2 + p§)2, and M’ is the mass of X.

7

In the Regge limit (s> o0 , M2 and t fixed), Regge behavior of

the exclusive processes gives

Disc B_ " szu(t) £ (Mz,t) '
M26 R

(1.3)



whereas in the scaling limit (MEsy 20 s s/M° and t fixed) we have

, 2.a(0) 2
DJ.scM2 A6 v (M )a fs(s/M ) . (1.4)

6

Uniformity” of these limits would require

£ (s/M%,8) (s/M%) 28 o x)

as s/M2~§ o0 . Thus we have

2.a(0) 2. 2a(t) (1.5)

DiscM2 A6 v (MT) {s/M7) y(t) '

which gives the behavior usually assumed for inclusive cross
sections near the phase space boundary. Although this uniformity
and the consequent equality of powers of s in (1.3) and (1.5)

may seem trivial, it is not. For example, the function

2,a2(0)+3
Disc . A, = (smfy2e(tirz @) (1.8)

2
M2 6 a(M2)3+b5

satisfies (1.3) and (1.4) but not (1.5). The limit in (1.85) is

a combined Regge (Mz—)cﬂ ) - helicity (s/M?5 @) limit. Thus
the power of (s/Mz)2 is given by the leading singularity in
complex helicity whereas the power of 52 in the Regge limit (1.3)

is given by the leading singularity in complex angular momentun.



The rule (1.1) says these are equal and thus (1.5) holds [the
example (1.6) would require a "nonsense" helicity pole at

m = A(t) + 117.

In the remainder of this section we establish ocur terminclogy
and notation and review the basic elements of complex helicity
analysis by discussing the five-particle amplitude since it
is the simplest example of the use of complex helicity. In
Section II we discuss in detail the arguments for (1.1). Con-

sider a double partial wave analysis in the 31 and t, channels

2
as shown in Fig. 1

3

3
2
(cosel)dmo(cosez)cos mw

= ) . 1
A, = I . z b (231+l)(232+1)dOm
m=0 j,=m j,=n (1.7)

. a(jlljzfm:’tlftz) r

where parity invariance has been used to remove sin mw terms.

We expect that the behavior for large cos a8 1» cos E?Z, and coswy

can be obtained by.performing Sommerfeld-Watson transforms in

jl’ j2, and m respectively. Since

s, cosGl
5, * coseé (1.8)

2
s « (m -tl-tz)cosel cosb

12 - 2Vt1t2 8ind, sinf,_. cosw

2 1 2



these correspond to large s and s respectively. Thus sin-

1257 12°
vlarities complex angular momenta jl and j2 determine the behavior for

Single Regge Limits:

5(4?C0 ; Sﬂha)51>fufl -%YQJ , (1.9a)

o~ L. ) [ H
5,50 ~11/52Jg1)t”t2_ e (1.9b)

and

Double Regge Limit:

S|, Sy w0 ;)] = 5;2/5152_ Tt tixed . (1.10)

-

Singularities in the complex helicity m determine the behavior for

Complex Helicity Limit:

Biq D W] 3,)31){,)11-%-‘,5«:::‘.. (1.11)
Singularities in both angular momentum and helicity determine the
mixed limits:

Regge - Helicity Limits:

2 . @ Lo .
S, )S'Z/SI“% o .Qljf,Jtzn‘f.a.ﬁ ) (1.12a)
o - '

S e T RN (1.12b)
and
Double Regge - Helicity Limit:

. ) : B ' 7
Sllsl 9512/533'2-—\,@ .) .t')-c':? +‘X€m ‘ (1.13)

In order to relate the behavior in these limits to singu-
larities in complex angular momentum and helicity we perform a
multiple Sommerfeld - Watscn transform of (1.7). The essential

features of this transform are exhibited by the following represen-—

tation for Asl,

Ao = (511{)3 jdmyijijcjjlf’(fﬂ) r'[-j1+w}) F{-jﬁm}

'
N

(1.14)
Jr‘ﬁ'\(_,

. ’ ,3]-"\’\ r ™ H -
¥ (-E)ifi -’3‘[' (‘")11) a(.)jj)l}v\q J"é_iltzj .



The nontrivial dependence on jl’ j2, and m of the group represen-
tation functions is exhibited by the three gamma-functions. The
remaining dependence ,as well as kinematic factors from converting
to invariants using (1.8) have been absorbed into the partial
wave amplitude a(jl, j2, m; Ty, tz). Equation -(1.14) has the advan-
tage of exhibiting the dependence of the amplitude on the invari-
ants in terms of which its analyticity properties are most simply
stated.

The integration contour in (1.14%) is such that the partial
wave sum is recovered by closing it to the right -- see Fig. 3.
Thus the singularities in M (-m) lie to right of the m contour
and the singularities in rﬂ(-ji+m) lie to the right of the ji
contour. The latter correspond to "sense" values of the helicity,
m:ji—p (p nonnegative integer).B The singularities due to the
r‘(—ji+m) 1ie to the left of the m contour, however, and thus
will give contributions to the behavior as &?/gﬁa'“bﬁﬁl. As
the m contour is swept to the left the poles in N (~ji+m) will
pinch the ji contour against any dynamical singularities in ji
in the partial wave amplitude (e.g., Regge poles) and produce
singularities in m. Thus a singularity at j.= (Xi(ti)gog will
lead to helieity singularities at

m = di - p (p nonnegative integer). (1.1)

Hence, if we assume the partial wave amplitude has no singulari-
ties in m, the complex helicity singularities are determined
completely by the "dynamical" complex angular momentum singulari-

ties (e.g. those in the partial wave amplitude).

Let us now discuss what arguments can be made for this



assumption. Suppose we consider the double-Regge limit of

(1.14). Then singularities at jy :(Xi lead to
B ~ J dra 7w ) P 4w) [l-sdy 4 )
T oy .
Al / ™y
"(—S.) s ("-g-a.) ("’Sn,) ,@!W‘I' ‘f“,jia ).

d? - m

(1.153

In general the behavior (—sl)u& - m

(- 52) represents a
simultaneocus discontinuity in S and s, in the double-Regge
region of phase space. Such physical region simultaneous dis-
continuities in overlapping variables are prohibited by the
Steinmann relation. Therefore, assuming the m contour can be
closed to the left,g we see that singularities in m are allowed
cnly for m differing from either &1 orcx’2 by an integer.l We
then obtain B
As ™~ ("512-)0('(“52") = \/:(7? ;'t:,iz)
a A - : .
=50 (=5, (st )

,5/,,
where 7? - —=l2 SO

(1.186)

The helicity integral (1.15) naturally provides Laurent expan-

sions for V. about'ﬁ N

Vidn:d, t,) = /_”? \/ /ff,f

K=-ob

(1.17)

The "kinematic" singularities in helicity in the M- di + m)
provide the terms with nonnegative k, i.e. "sense" values of the
helicity m = & - p. "Nonsense" terms for negative k would
correspond to "dynamical" singularities in helicity, i.e. singu-

larities in the residue ﬁ?(m; L. tZ) of the partial wave

amplitude.



The "nonsense" terms in (1.17) clearly cannot give any con-
tributions to the residues of the poles for X 1 or 0{2 integral,
since they correspond to nonsense helicities (nonpolynomial
residues). Thus they would be terms which contribute to none
of the rescnances but which do contribute to the Regge trajec-
tories. Such a situation is quite at odds with our usual notions
of the trajectory interpolating the resonances but not a priori

inccnceivable.

We clcse this section with a technical remark in order to
eliminate a possible source of confusion. In general one expects
fixed pole dynamical singularities as well as moving poles and
cuts.l These are located at ji - m = n where n is a negative
integer. They lie to the right of the m contour, however, and
thus do not produce the "nonsense' terms ’ﬂ'-n. (Alternatively,
if the ji integrals are done first one sees fixed poles do not
produce singularities in m since they cannot pinch the contour
against the other dynamical singularities on the left of the ji
contour or the singularities in [t (wji + m).) The "nonsense"
terms would be produced by singularities at di - m = n to the

left of the m contour.
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II. ARGUMENTS AGAINST "NONSENSE" HELICITY SINGULARITIES

In this section we give four rather different arguments
against "nonsense"” helicity singularities, each proceeding from
different technical assumptions. The first two arguments (Secs.
IT.A and II.B) rely on the existence of the Sommerfeld-Watson
transform or, equivalently, the uniformity of interchange of
Regge and helicity limits. Most readers will find this assump-~
tion convinecing. However, in Sec. II.C we present a more funda-
mental argument which procedes directly from analyticity by
use of the Steinmann relaticn and does not require this assump-
tion. Since the Steinmann relation only applies to the physical
region, this argument needs to be supplemented by the assertion
of Sec., II.D that other singularities do not contribute to the

Regge or helicity limits.
A. Argument from Regge Behavior

The Sommerfeld-Watson representation (1.14) suggests that
the asymptotic limits 81> D 5 S,~» 00 7?,3 o are simply
determined by the singularities in jl’ jQ, and m in the partial-
wave amplitude and give the same result when taken in any order.
Indeed, the complex angular momentum and helicity language
really only makes sense if this is the case. If the limits can
be uniformly interchanged in this way, consistency with Regge
behavior can be used t¢ exclude "nonsense" helicity singulari-

ties in certain cases.
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Consider the discontinuity of As in 51 in the physical
region for the 2 -> 3 process. The discontinuity is then given

by a sum over intermediate states as shown in Fig. U,

o)
\ _ k
DtSC_S As‘ - Z >2 Xk (512,5;)' 'é:, ). (2.1)

! k=zo

The sum over powers of S5 is equivalent to a partial wave expan-
sion in the angular momentum of the intermediate states. In
the Regge limit, 815 —» <0 and 512152 fixed, we can use Regge

behavior of the individual exclusive processes to obtain

\ A, & 5, \K
Dise As o $a z,gj[f;')@e“w’*’»fz)- (2.2)

'%2[354+¥eJ

The behavior
oAy k
32 o~ §DJ ﬁg& (2.3)

arises because 8o corresponds to helicity k of the intermediate
state [see Eq. (2.12)]. Comparing with (1.14) we see that (2.2)
apparently corresponds to only "sense" values of helicity m = 0<2 - p.
Unfortunately we cannot conclude that "nonsense'" terms are

absent since slzfsz-yco is not inside the physical region for the

2 = 3 process and it is possible that (2.2) diverges when con-
tinued to that point. [In this case Eq. (2.2) should be rearranged
into an expansion about a point in the physical region where

the series converges.] Such divergences of partial-wave expan-

sions are common phenomena.
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The simple Regge argument can be used in the correspond-

ing case of DiscS A6 shown in Fig. 2,10 however, since then
1

312/52, 831/83-500 is inside the physical region. The kinematics
for this case will be reviewed in Sec. II.C below. We also
discuss belew the possibility of continuing this result to

5(3 = 0 to obtain the absence of "nonsense" helicity singulari-
ties for A..

5

B. Argument from Unitarity

If the interchange of limits is uniform, we can also argue
against "nonsense" helicity singularities directly from unitar-
ity. Again we must ccnsider A6 80 we can work inside the physi-
cal region. The discontinuity of AB in S (see Fig. 2) in the
Regge~Helicity limit analogous to (1.12), Sq5 812/81, 531/51-900

with the other invariants fixed, is

of =1 A5 =N
. of, [Sin )2 2(53t ) 273
Dise, A~ s ()T (3

nyN3
¥ V [f’}fz}f-? )‘ Sz 153/523) .

(2.4)

s

We have exhibited the contributins of possible "nonsense" helicity

singularities at &, - n, and &, - n, (n, and n, are negative).
2 3 3

2 3 2

The general limit (2.4) can be related to the forward limit

- _ 2 _ 2
1 T 9 37 Soj Sy T S5 = m, = mg by the Schwartz

inequality where the inner product is taken as a sum over inter-

where t 0, t, = t = 0,

mediate states.ll This is illustrated graphically in Fig. 5 and

gives
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. L -
ﬁoh(S\z )"'1 n’-(ssl )3 M2\ /M3 |2 (2.5)
- —_—

i <,

3

doePt
< “y(0) (531 )Zf 3" "Wy
|

2(4-1") g
<)Y

)
V

where dvf is the leading trajectory with vacuum quantum num-
bers. Thus when d]—lies above C(V(O))the next singularity
below c{V(O), the existence of "nonsense" helicity singularities
m the geweval limit requives covrespoudivig sivguia, fres
at n, = n, and Ny = ng in the forward limit. owever, for
negative t, (or ty) the forward amplitude is forbidden by uni-

. . 2 .12 NNy
tarity to grow by a power larger than 819 (or Sal) Thus V

vanishes for all o((tl) 2 dy, (0) and t,, t, <€ 0 when

2* "3
- - f 43 £

0(2 n, >1 cr 0(3 Ny > 1. [The condition A (tl, tys t3) £0

must also be satisfied in order to assure that one is in the

physical region--see Sec. II.C .below.] For most trajectories

and negative integers n there will be some region of negative

Nan3 Nofy |

tys t3 where V must vanish. Since V is expected to be

an analytic function of t, and tss it will then vanish for

all t, and t,. However, for trajectories like the pion with «(0) £ 0

we cannot exclude n = -1 terms by this argument.

C. Argument from Steinmann Relations ~

We have noted above that uniformity of interchange of limits

and Regge behavior (or unitarity) exclude "nonsense" helicity
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singularities in certain cases. However, the existence of
Sommerfeld-Watson representations like (1.14) is not rigorously
established2 so we would like to try to do without the uniformity
assumption. There are several types of nonuniformities to be
concerned about.

(1} Nonuniformity of interchange of Fegge and Helicity
limits, for the same Reggeon. When the Regge argument of Sec. IT.A

can be applied this is excluded. For example, suppose Sl7—/52--‘500

is inside the physical region for Ag . Consider the two orders of
limits Sq — © [Regge 1imit (1.9b)] then $q/51—§c° and
Sig = o® [Helicity limit (1.11)] then $§,-—» <0 which both

lead to the Regge-Helicity l1imit (1.12b). In the first order

Eq. (2.2) gives

oA,
Diseg As 7™~ S By (s, 1)

(2.8)

The second order can also be obtained from Regge behavior of the
individual intermediate states if Shz/sz-é =0 iz inside the
physical region merely by changing the relative orientation of the
blobs in Fig. 4 [the corresponding case for A is studied in detail
below~-see Lq. (2.12) and Ref. 18.] Taking this limit on (2.1)
and using (2.3) we obtain (2.6) again.

(ii) Nonuniformity of interchange of Regge-Helicity limit
for one Reggeon with Regge limit for another Reggeon. The
example (1.6) is an instance of such a nonuniformity. An analagous
is

example for A5
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5,5
2 4 L . (2.7)

First taking the Regge-Helicity limit (1.12 b) then S,-é 0
(1.8%a) vyields 5,20(7- S’*‘_o(a*/ ) The reverse order of
limits yields 5,1°(2- S, *—ofy (‘5!2/5’51) . This type of
behavior cannot be excluded using the Regge arguments of Sec., IT.A
since as S,-—a o0 the number of intermediate states increases
and the sum could diverge te produce such behavior.l3
In order to exclude this type of behavior and provide ancther

type of argument against nonsense helicity singularities we extend

the Steinmann relation argument of Sec, I. In Sec. I we recalled

that the Steinmann relation requires mw = ‘ii -k (k any
integer). HNow we show that in fact k must be nonnegative in cer-
tain cases. The argument in many respects is similar to the Repge

argument of Sec. IT. A but it is wvalid for 5, large.
Again we consider the six-particle amplitude of Fig. 2 in

the single Regge-helicity limit:



16

Dise, A, ~ 54 (5 )““r”z*”l (S_gl )“’3‘”:‘*"‘1 (2.4

h '03 .
g v ’ {f’)%z)f:" ; 321531323)

S
If we take the further limit S,s S33 Sog -y D with 23/§2

fixed we expect to obtain the same behavior as in the triple

Regge-helicity limit which is analegous to (1.13)

N,V My . W ", N3
V 272~ S, 153 3 \/ /‘é,){,)-l_g)

n
where we have also picked out a single term Sog l. The triple

(2.8

Regge-helicity limit can also be reached by taking the helicity

1imit'7ij = 0 on the triple-Regge form

Di A~ 3 ‘*;(5\1 )dl( 53 >°<3 (2.9)
15C = —— —
5, 'l : s S,
x - -~ 3
\/J?{%u,£2,"’3, )7'1;)?2?, ’/3,) )
where f&J = sljs.,' Thus the form (2.9) corresponds to a
i %3
nensense term (2
10)
_m1 -ng /7. nnym
Ny 3 300 J
Vs = 0 () A7
in the expansion analogous to (1.17). The partlcular ratios of

invariants occuring in (2.8) or (2.10)may appear peculiar to the
reader unfamiliar with these limits but we will see below that
they have a very natural meaning.lu

The behavior (2.8) which allows the "nonsense" term (2.4)
to survive in the triple-Regge~helicity limit implies nonpoly-
nomial dependence in Disc s Ag in Sps S35 and s,4 since h; are
negative. Such behavicr generally would be expected to arise
from singularities in Disc s AG' For example

Jds," £ P(S) ~— 2(5 )ja/s PLs, )(S') f2an

2 S;990 =y
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as long as the integrals converge. A cut of finite length thus
naturally produces such inverse powers. We shall now argue that
these singularities would be in the physical region in (2.4).
Such singularities are forbidden by the Steinmann relation since
the discontinuity in s, cannot have simultaneous discontinuities
in the overlapping variables s,, S5, and S,q. Thus "nonsense"
terms are excluded in (2.9) and probably are then also absent in
(2.4). 15
We now wish to show directly that the physical region for

( 2.4 covers essentially all real S,, Sy, and S, .- To do this
we parametrize the momenta as follows. Let frame 2 be such that
the intermediate state of mass JE; is at rest and p; and

q, * p; * pp' are along the z- axis. This differs from the
t2— channel center-of-mass by a boost along the z- axis.
Similarly frame 3 has Jgi at rest and p{ and g5 = py * py'
along the z-axis. Since {E& is at rest in both frames they
must differ by a rotation Rz(q%) Ry(é,) Rz(¢i)‘ In the physical

regions for the reactions p; Y pp > ~ppr psl and

- Psl_p?»'_%pl' + py We have t2,t3 < 0 and 42, 91, CfB are
physical angl@s of rotation. We then find in the limit

S, 1/ wu L s ed
/ = - 4

coc B A |+ fo
:"H o .41/ L-f: _,1-1;2 2 zr‘d(ar(‘p ]
S5 ~ -fs,/‘gl [+t ~t, -2V, o0y ]

“23 - ‘Z/ “3‘/ BRI RL i,
~ Wity oy 2 2Hg ity e 8y-05) |

(2.12)
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From (2.12) we see that a contribution to the discontinuity

in s, of spin J must be a polynomial in Sps Sy and s of total

1 23
order at most J. Such contributions then naturally give the
terms in (2.8) or (2.10)for positive N . However, although any
0 S and

increases more and more terms enter and the series

given contributicon contributes only polynomials in s

as &

So30 1

could start to diverge to produce terms with negative n; . Thus
whereas the series must be convergent inside the physical region,
it could be the representation of a function with a singularity
outside the physical region. This is a typical phenomena with
partial wave expansions.

However, the physical region actually encompasses essentially
all real 855 S35 Spg- This is because the coefficients of the

. 512 531 : :

large variables /sl and //Sl in (2.12) have linear zeroes
inside the physical region and thus slight variations in them
around zero can give essentially any value of Sps Sz OF S,pg e

Consider, for example,
It
oo L -
)+ t, -ty - 2 th t,cosdy = 0. (2.13)
This can be solved for physical dpz, if
2 < ey

or
(2.14)

A Hu{z,'éz ) = % ,{;4»1’35.21{?112_-—33 {201 20,

Similarly, the other bracketts in (2.7) can vanish if

16
A /{uf;}./{z ) £0. Thus "nonsense" helicity singularities

are forbidden for tl such that ,c\{t‘.”fhf} :}é o . Assuming

ann n

2 3 is an analytic function of the t., they are also
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forbidden for all t; by analytic continuation, since A £ O

is a finite region in the tileg

D. Singularities Other Than Normal Thresholds

Throughout this paper we have made the plausible physical
assumption that singularties in the asymptotic behaviors of
amplitudes are asymptotic representations of the true singu-
larity structure of the amplitude. Thus the term A;rs—/—f,,‘)%/-_f,)d"dz'
in (1.16) is interpreted as representing a simultaneocus discon-

tinuity in s, and $q 4 for large 51 52,‘?h "Nonsense" helicity

el

=N, | \N=%4n
singularities would modify this to AS" A“("Sn_> : ("‘51) 2 —_>,_) n

where 1 € O . Since Disc < AS &L (- sz)n, the discontinuity

1

in S, apparently has a singularity in s However, since n is

x
(negative) integral this need not represent a singularity for
large s, inside the physical region and thus is not necessarily
in contradiction with the Steinmann relations. Complex singu-
larities at finite values of the invariant must also be taken
into account. Inverse powers are usually asymptotic representa-

ticns of singularities of finite extent located at finite values

of the invariant [see Eq. (2.11}].

One might indéed expect that such singularities exist in Ag or A
and thus "nonsense™ helicity singularities are required. For
example, the usual box singularity (Fig. 6) is present for small
S1 and Sy However, because 312>> S1 and Sos the nature of this
singularity is rather different than in the four-particle
amplitude. Indeed it is present in the physical region -- but
only if apprecached from (Im sl) (Im 82)<Q 0. Since a Regge type

o) —ofy +1

term like (—sl) represents a singularity whether
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approached from Im Sl> 0 or Im sl<10 it cannot represent singu-
larities of this type. Furthermore for this diagram there are
also complex anomalous thresholds which are closely tied to the
above behavior of the double spectfal singularity and these also
cannct be represented by Regge poles.- In general we expect
Regge poles to represent only normal threshold singularities.
Regge cuts may represent the higher order Landau diagrams.

These points will be discussed further by one of us}g

In this connection we would like to make a remark on the
relationship between "nonsense" helicity singularities in the six-
particle amplitude and the five-particle amplitude. If particles
are Reggeized A; can be obtained by taking the residue of Ap at

q% =0 ' so the absence of "nonsense™ helicity singulari-
ties in Ag shown in Sec. II1.C eliminates one source cf them in
A5. However, there is another source. The argument of Sec. II.C.
should really be made for finite values of the invariants. Thus

512 531
there we wish to assume that Sy //sl, and //sl

are very large but finite. Then there are corrections to
' 512 . 512 :
(2.12) of order 0(1l), 0(s,), Of // 2), etc. Since /. is
_ 1 ] S4
much larger than these, (2.12)essentially still holds. However,

we can only exclude singularities from a finite region of )

s S312° o : / Y
0( 12/81) or 0( 31/51). Thus singularities like 52 = C(‘If‘,lf;}'{g) {/_f}
cannot generally be excluded for C # )] .20 These correspond to

a behavior of the triple-Regge vertex in (2.9) like

-
‘/23 ~— [1/71'1— C({,/izjég)] . (2.1%)
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If C(t), t2, 13) were to vanish for oz= O this would lead to a nonsense helicity singularity in As.
However, singularities like (2.15) would be asymptotic representations of singularities at s;52=
C(t1, t2, 13)12. These are not normal threshold-type singularities and we do not expect them to
occur in Regge or helicity expansions as we have discussed above.

IIT. Conclusion
We have given arguments for the dependent nature of singularities in complex helicity, t.e., they
are related to angular momentum singularities by

m = oy - p, (p non-negative integer).

However, although helicity singularities do not correspond to new dynamical objects, they do
determine distinct asymptotic limits. Thus through their determination of helicity singularities,
singularities in angular momentum determine asymptotic limits in addition to the conventional
multi-Regge limit.
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FIGURE CAPTIONS

Kinematics for the five-particle amplitude.

Kinematics for six-particle amplitude,

Integration contour for Eq. (1.14).

(a) Complex jl plane when jl integration is performed
first. (b} Complex m plane when m is performed first.
Discontinuity of Ac.
Schwartz inequality as applied in Sec. 1T A.

Box Diagram for Ac.
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